O ct 2 00 6 Quadratic Factors of f ( X ) − g ( Y )

نویسندگان

  • Manisha Kulkarni
  • Peter Müller
  • B. Sury
چکیده

This note extends the characteristic 0 results in [Bil99] to arbitrary characteristic. The method is completely different from Bilu’s. The main bulk of the work handles the case of positive characteristic. Indeed, if one skips all the arguments specific to this, one obtains a particularly short and natural proof of Bilu’s results. Also, the rather specific main result of [BG05] is a trivial consequence of the theorems below. The generalization of [Bil99, Theorem 1.2] is

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic $rho$-functional inequalities in $beta$-homogeneous normed spaces

In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le  left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) -  f(y)right)right|,  nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|

متن کامل

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008